软件下载站,为您提供安全的软件下载!

当前位置:首页 > 电脑专区 > 应用软件 > 电子阅读 > 智能web算法-带书签pdf高清电子版

智能web算法-带书签pdf高清电子版

分享到:
智能web算法由Douglas.McIlwraith先生和Dmitry.Babenko先生联袂编著,并由我国计算机博士陈运文先生等翻译而成,是一本关于智能web算法的经典书籍。现代web应用那绚丽流畅的用户界面经常为人所津津乐道。这是因为利用各种技术对信息进行智能化的处理,从而带来其他方法所不能给予的价值。小编分享的这本智能web算法涵盖了五类重要的智能算法:搜索,推荐,聚类,分类和分类器组合,并结合具体案例讨论了它们在web应用中的角色及要注意的问题。除了第一章的概要性介绍以及第七章对所有技术的整合应用外,第二到第六章以代码示例的形式分别对这五类算法进行了介绍。智能Web算法适合对算法感兴趣的工程师与学生阅读,对希望从业务角度更好地理解机器学习技术的产品经理和管理层来说,亦有很好的参考价值。
智能web算法

作者介绍:

Douglas.McIlwraith博士,在剑桥大学计算机科学系获得了学士学位,而后在帝国理工大学获得了博士学位。他是一位机器学习专家,目前他在位于伦敦的一家广告网络公司担任数据科学家职位。他在分布式系统、普适计算、通用感知、机器人以及安全监控方面都贡献了研究成果,他为让技术更好地服务人们的生活而无比激动。Haralambos Marmanis博士是将机器学习技术引入工业解决方案的先驱,在专业软件研发方面拥有 25年经验。
Dmitry.Babenko,为银行、保险、供应链管理、商业智能企业等设计和开发了丰富的应用和系统架构。他拥有白俄罗斯国立信息和无线电大学计算机硕士学位。
陈运文,计算机博士,达观数据CEO,ACM和IEEE会员,中国计算机学会高级会员;在大数据架构设计、搜索和推荐引擎、文本数据挖掘等领域有丰富的研发经验;曾经担任盛大文学首席数据官、腾讯文学数据中心高级总监、百度核心算法工程师等工作,申请有 30余项国家发明专利,多次参加国际 ACM数据算法竞赛并获得冠亚军荣誉。

免责声明:

来源于网络,仅用于分享知识,学习和交流!请下载完在24小时内删除。
禁用于商业用途!如果您喜欢《智能web算法》,请购买正版,谢谢合作。
爱学习,请到3322软件站查找资源自行下载!

智能web算法目录:

第1章 为智能Web建立应用1
1.1 智能算法的实践运用:Google Now 3
1.2 智能算法的生命周期5
1.3 智能算法的更多示例6
1.4 不属于智能应用的内容 7
1.4.1 智能算法并不是万能的思考机器 7
1.4.2 智能算法并不能成为完全代替人类的工具8
1.4.3 智能算法的发展并非一蹴而就 8
1.5 智能算法的类别体系9
1.5.1 人工智能 9
1.5.2 机器学习10
1.5.3 预测分析 11
1.6 评估智能算法的效果 13
1.6.1 评估智能化的程度 13
1.6.2 评估预测14
1.7 智能算法的重点归纳 16
1.7.1 你的数据未必可靠 16
1.7.2 计算难以瞬间完成 17
1.7.3 数据规模非常重要 17
1.7.4 不同的算法具有不同的扩展能力 18
1.7.5 并不存在万能的方法 18
1.7.6 数据并不是万能的 18
1.7.7 模型训练时间差异很大18
1.7.8 泛化能力是目标19
1.7.9 人类的直觉未必准确 19
1.7.10 要考虑融入更多新特征 19
1.7.11 要学习各种不同的模型 19
1.7.12 相关关系不等同于因果关系 20
1.8 本章小结20
第2章 从数据中提取结构:聚类和数据变换21
2.1 数据、结构、偏见和噪声 23
2.2 维度诅咒26
2.3 k-means算法27
2.3.1 实践运用 k-means31
2.4 高斯混合模型 34
2.4.1 什么是高斯分布34
2.4.2 期望最大与高斯分布 37
2.4.3 高斯混合模型 37
2.4.4 高斯混合模型的学习实例 38
2.5 k-means和GMM的关系41
2.6 数据坐标轴的变换 42
2.6.1 特征向量和特征值 43
2.6.2 主成分分析 43
2.6.3 主成分分析的示例 45
2.7 本章小结47
第3章 推荐系统的相关内容48
3.1 场景设置:在线电影商店 49
3.2 距离和相似度 50
3.2.1 距离和相似度的剖析 54
3.2.2 最好的相似度公式是什么 56
3.3 推荐引擎是如何工作的57
3.4 基于用户的协同过滤 59
3.5 奇异值分解用于基于模型的推荐 64
3.5.1 奇异值分解 64
3.5.2 使用奇异值分解进行推荐:为用户挑选电影66
3.5.3 使用奇异值分解进行推荐:帮电影找到用户71
3.6 Net.ix竞赛74
3.7 评估推荐系统 76
3.8 本章小结78
第4章 分类:将物品归类到所属的地方79
4.1 对分类的需求 80
4.2 分类算法概览 83
4.2.1 结构性分类算法84
4.2.2 统计性分类算法86
4.2.3 分类器的生命周期 87
4.3 基于逻辑回归的欺诈检测 88
4.3.1 线性回归简介 89
4.3.2 从线性回归到逻辑回归91
4.3.3 欺诈检测的应用94
4.4 你的结果可信吗 102
4.5 大型数据集的分类技术 106
4.6 本章小结 108
第5章 在线广告点击预测.109
5.1 历史与背景 110
5.2 广告交易平台 112
5.2.1 cookie 匹配 113
5.2.2 竞价(bid) 113
5.2.3 竞价成功(或失败)的通知 114
5.2.4 广告展示位 114
5.2.5 广告监测 115
5.3 什么是bidder 115
5.3.1 bidder的需求 116
5.4 何为决策引擎 117
5.4.1 用户信息 117
5.4.2 广告展示位信息 117
5.4.3 上下文信息 117
5.4.4 数据准备 118
5.4.5 决策引擎模型 118
5.4.6 将点击率预测值映射为竞价价格 118
5.4.7 特征工程 119
5.4.8 模型训练 119
5.5 使用Vowpal Wabbit进行点击预测 120
5.5.1 Vowpal Wabbit的数据格式 120
5.5.2 准备数据集123
5.5.3 测试模型 128
5.5.4 模型修正 131
5.6 构建决策引擎的复杂问题132
5.7 实时预测系统的前景 133
5.8 本章小结 134
第6章 深度学习和神经网络.135
6.1 深度学习的直观方法 136
6.2 神经网络 137
6.3 感知机 139
6.3.1 模型训练 141
6.3.2 用 scikit-learn训练感知机142
6.3.3 两个输入值的感知机的几何解释144
6.4 多层感知机146
6.4.1 用反向传播训练 150
6.4.2 激活函数 150
6.4.3 反向传播背后的直观理解152
6.4.4 反向传播理论 153
6.4.5 scikit-learn中的多层神经网络 155
6.4.6 训练出来的多层感知机 158
6.5 更深层:从多层神经网络到深度学习 159
6.5.1 受限玻耳兹曼机 160
6.5.2 伯努利受限玻耳兹曼机 160
6.5.3 受限玻耳兹曼机实战 164
6.6 本章小结 167
第7章 做出正确的选择168
7.1 A/B测试 170
7.1.1 相关的理论170
7.1.2 评估代码 173
7.1.3 A/B测试的适用性174
7.2 多臂赌博机175
7.2.1 多臂赌博机策略 176
7.3 实践中的贝叶斯赌博机策略 180
7.4 A/B测试与贝叶斯赌博机的对比 191
7.5 扩展到多臂赌博机192
7.5.1 上下文赌博机 193
7.5.2 对抗赌博机193
7.6 本章小结 194
第8章 智能Web的未来196
8.1 智能Web的未来应用197
8.1.1 物联网 197
8.1.2 家庭健康护理 198
8.1.3 自动驾驶汽车 198
8.1.4 个性化的线下广告199
8.1.5 语义网 199
8.2 智能Web的社会影响200
附录A 抓取网络上的数据.201

下载说明:

方法一:
1、下载并解压,得出pdf文件
2、如果打不开本文件,别着急,这时候请务必在3322软件站选择一款阅读器下载哦
3、安装后,再打开解压得出的pdf文件
4、以上都完成后,接下来双击进行阅读就可以啦,朋友们开启你们的阅读之旅吧。
方法二:
1、可以在手机里下载3322软件站中的阅读器和百度网盘
2、接下来直接将pdf传输到百度网盘
3、用阅读器打开即可阅读
展开更多

软件截图

下载提示

智能web算法-带书签pdf高清电子版

正在下载...

扫描二维码,手机下载APP

软件下载站本地下载

相关文章