微分方程数值解法第四版(含答案)pdf扫描版
分享到:
微分方程数值解法第四版是编者在微分方程数值解法第三版的基础上修订而成的。微分方程数值解法第四版是一本专注于高等数学方程方面的书籍。随着教育水平的提高,越来越多人接受高等教育。接触的知识也越来越有深度。好的学习资料是很重要。小编今天带来这本书被许多著名高校作为教程书。贴心的小编还给大家找来答案,方便大家订正学习。话说回来微分方程是什么呢?小编是个数学小编,所以从网上搜索知微分方程指含有未知函数及其导数的关系式。是找出未知函数本次修订的宗旨是加强方法及其应用。微分方程数值解法第四版考虑到不同院校的需要,仍然保留常微分方程数值解法这一章。为了更方便教学,采取先介绍有限差分法,后介绍GMerkin有限元法,去掉原来的第七章,将离散方程的有关解法与椭圆方程的差分法和有限元法合并,同时增设了一些数值例子,适当删减部分理论内容,突出应用,降低难度。微分方程数值解法第四版包括六章,第一章为常微分方程数值解法,第二章至第四章为椭圆、抛物和双曲偏微分方程的有限差分法,第五章、第六章为Galerkin有限元法。
微分方程数值解法第四版是为信息与计算科学专业编写的教材,也可以作为数学与应用数学、力学及某些工程科学专业的教学用书,对于从事科学技术、工程与科学计算的专业人员也有参考价值。想要了解更多就下载这本书看看吧。欢迎来3322软件站免费下载阅读。
ISBN:9787040248630
版次:4
商品编码:10697380
包装:平装
开本:16开
出版时间:2009-01-01
用纸:胶版纸
页数:278
1 引论
1.1 一阶常微分方程初值问题
1.2 Euler法
1.3 线性差分方程
1.4 Gronwall不等式
习题
2 线性多步法
2.1 数值积分法
2.2 待定系数法
2.3 预估-校正算法
2.4 多步法的计算问题
习题
3 相容性、稳定性和误差估计
3.1 局部截断误差和相容性
3.2 稳定性
3.3 收敛性和误差估计
习题
4 单步法和Runge-Kutta(龙格-库塔)法
4.1 Tsylor展开法
4.2 单步法的稳定性和收敛性
4.3 Runge-Kutta法
习题
5 绝对稳定性和绝对稳定域
5.1 绝对稳定性
5.2 绝对稳定域
5.3 应用例子
习题
6 一阶方程组和刚性问题
6.1 对一阶方程组的推广
6.2 刚性问题
6.3 A稳定性
6.4 数值例子
7 外推法
7.1 多项式外推
7.2 对初值问题的应用
7.3 用外推法估计误差
习题
第二章 椭圆型方程的有限差分法
1 差分逼近的基本概念
2 一维差分格式
2.1 直接差分化
2.2 有限体积法
2.3 待定系数法
2.4 边值条件的处理
习题
3 矩形网的差分格式
3.1 五点差分格式
3.2 边值条件的处理
3.3 极坐标形式的差分格式
习题
4 三角网的差分格式
习题
5 极值定理和敛速估计
5.1 差分方程
5.2 极值定理
5.3 五点格式的敛速估计
习题
6 迭代法
6.1 一般迭代法
6.2 SOR法(逐次超松弛法)
习题
7 交替方向迭代法
习题
8 预处理共轭梯度法
8.1 共轭梯度法
8.2 预处理共轭梯度法
习题
9 数值例子
第三章 抛物型方程的有限差分法
1 最简差分格式
习题
2 稳定性与收敛性
2.1 稳定性概念
2.2 判别稳定性的直接估计法(矩阵法)
2.3 收敛性与敛速估计
习题
3 Fourier方法
习题
4 判别差分格式稳定性的代数准则
习题
5 变系数抛物方程
习题
6 分数步长法
6.1 ADI法
6.2 预-校法
6.3 LOD法
习题
7 数值例子
7.1 一维抛物方程的初边值问题
7.2 二维抛物方程的初边值问题
7.3 含对流项的抛物方程
第四章 双曲型方程的有限差分法
1 波动方程的差分逼近
1.1 波动方程及其特征
1.2 显格式
1.3 稳定性分析
1.4 隐格式
1.5 数值例子
习题
2 一阶线性双曲方程组
2.1 双曲型方程组及其特征
2.2 Cauchy问题、依存域、影响域和决定域
2.3 初边值问题
习题3 初值问题的差分逼近
3.1 迎风格式
3.2 积分守恒差分格式
3.3 粘性差分格式
3.4 其他差分格式
习题
4 初边值问题和对流占优扩散方程
4.1 初边值问题
4.2 对流占优扩散方程
4.3 数值例子
习题
第五章 边值问题的变分形式与Ritz-Galerkin法
1 二次函数的极值
习题
2 Sobolev空间初步
2.1 弦的平衡
2.2 一维区间上的sobolev空间Hm(I)
2.3 平面域上的Sobolev空间Hm(G)
习题
3 两点边值问题
3.1 极小位能原理
3.2 虚功原理
习题
4 二阶椭圆边值问题
4.1 极小位能原理
4.2 自然边值条件
4.3 虚功原理
习题
5 Ritz-Galerkin方法
习题
6 谱方法
6.1 三角数逼近
6.2 Fourier谱方法
6.3 拟谱方法(配置法)
第六章 Galerkin有限元法
1 两点边值问题的有限元法
1.1 从Ritz法出发
1.2 从Galerkin法出发
1.3 收敛性和误差估计
习题
2 一维高次元
2.1 一次元(线性元)
2.2 二次元
2.3 三次元
习题
3 解二维问题的矩形元
3.1 Lagrange型公式
3.2 Hermite型公式
习题
4 三角形元
4.1 面积坐标及有关公式
4.2 Lagrange型公式
4.3 Hermite型公式
习题
5 曲边元和等参变换
6 二阶椭圆方程的有限元法
6.1 有限元方程的形成
6.2 矩阵元素的计算
6.3 边值条件的处理
6.4 举例:Poisson方程的有限元法
6.5 数值例子
习题
7 多重网格法
7.1 差分形式的二重网格法
7.2 有限元形式的二重网格法
7.3 多重网格迭代和套迭代技术
8 初边值问题的有限元法
8.1 热传导方程
8.2 波动方程
名词索引
参考文献
微分方程数值解法第四版禁用于商业用途!如果您喜欢《微分方程数值解法第四版》,请购买正版,谢谢合作。
爱学习,请到3322软件站 / 查找资源自行下载!
1、下载并解压,得出pdf文件
2、如果打不开本文件,请务必在3322软件站选择一款阅读器/zt/430.html下载
3、安装后,在打开解压得出的pdf文件
4、双击进行阅读
方法二:
1、在手机里下载3322软件站中的阅读器和百度网盘
2、直接将pdf传输到百度网盘
3、用阅读器打开即可阅读
微分方程数值解法第四版是为信息与计算科学专业编写的教材,也可以作为数学与应用数学、力学及某些工程科学专业的教学用书,对于从事科学技术、工程与科学计算的专业人员也有参考价值。想要了解更多就下载这本书看看吧。欢迎来3322软件站免费下载阅读。
简介:
出版社: 高等教育出版社ISBN:9787040248630
版次:4
商品编码:10697380
包装:平装
开本:16开
出版时间:2009-01-01
用纸:胶版纸
页数:278
编辑推荐:
微分方程数值解法第四版共分7个章节,主要对微分方程数值解法作了介绍,具体内容包括常微分方程初值问题的数值解法、椭圆型方程的有限差分法、抛物型方程的有限差分法、双曲型方程的有限差分法等。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。目录:
第一章 常微分方程初值问题的数值解法1 引论
1.1 一阶常微分方程初值问题
1.2 Euler法
1.3 线性差分方程
1.4 Gronwall不等式
习题
2 线性多步法
2.1 数值积分法
2.2 待定系数法
2.3 预估-校正算法
2.4 多步法的计算问题
习题
3 相容性、稳定性和误差估计
3.1 局部截断误差和相容性
3.2 稳定性
3.3 收敛性和误差估计
习题
4 单步法和Runge-Kutta(龙格-库塔)法
4.1 Tsylor展开法
4.2 单步法的稳定性和收敛性
4.3 Runge-Kutta法
习题
5 绝对稳定性和绝对稳定域
5.1 绝对稳定性
5.2 绝对稳定域
5.3 应用例子
习题
6 一阶方程组和刚性问题
6.1 对一阶方程组的推广
6.2 刚性问题
6.3 A稳定性
6.4 数值例子
7 外推法
7.1 多项式外推
7.2 对初值问题的应用
7.3 用外推法估计误差
习题
第二章 椭圆型方程的有限差分法
1 差分逼近的基本概念
2 一维差分格式
2.1 直接差分化
2.2 有限体积法
2.3 待定系数法
2.4 边值条件的处理
习题
3 矩形网的差分格式
3.1 五点差分格式
3.2 边值条件的处理
3.3 极坐标形式的差分格式
习题
4 三角网的差分格式
习题
5 极值定理和敛速估计
5.1 差分方程
5.2 极值定理
5.3 五点格式的敛速估计
习题
6 迭代法
6.1 一般迭代法
6.2 SOR法(逐次超松弛法)
习题
7 交替方向迭代法
习题
8 预处理共轭梯度法
8.1 共轭梯度法
8.2 预处理共轭梯度法
习题
9 数值例子
第三章 抛物型方程的有限差分法
1 最简差分格式
习题
2 稳定性与收敛性
2.1 稳定性概念
2.2 判别稳定性的直接估计法(矩阵法)
2.3 收敛性与敛速估计
习题
3 Fourier方法
习题
4 判别差分格式稳定性的代数准则
习题
5 变系数抛物方程
习题
6 分数步长法
6.1 ADI法
6.2 预-校法
6.3 LOD法
习题
7 数值例子
7.1 一维抛物方程的初边值问题
7.2 二维抛物方程的初边值问题
7.3 含对流项的抛物方程
第四章 双曲型方程的有限差分法
1 波动方程的差分逼近
1.1 波动方程及其特征
1.2 显格式
1.3 稳定性分析
1.4 隐格式
1.5 数值例子
习题
2 一阶线性双曲方程组
2.1 双曲型方程组及其特征
2.2 Cauchy问题、依存域、影响域和决定域
2.3 初边值问题
习题3 初值问题的差分逼近
3.1 迎风格式
3.2 积分守恒差分格式
3.3 粘性差分格式
3.4 其他差分格式
习题
4 初边值问题和对流占优扩散方程
4.1 初边值问题
4.2 对流占优扩散方程
4.3 数值例子
习题
第五章 边值问题的变分形式与Ritz-Galerkin法
1 二次函数的极值
习题
2 Sobolev空间初步
2.1 弦的平衡
2.2 一维区间上的sobolev空间Hm(I)
2.3 平面域上的Sobolev空间Hm(G)
习题
3 两点边值问题
3.1 极小位能原理
3.2 虚功原理
习题
4 二阶椭圆边值问题
4.1 极小位能原理
4.2 自然边值条件
4.3 虚功原理
习题
5 Ritz-Galerkin方法
习题
6 谱方法
6.1 三角数逼近
6.2 Fourier谱方法
6.3 拟谱方法(配置法)
第六章 Galerkin有限元法
1 两点边值问题的有限元法
1.1 从Ritz法出发
1.2 从Galerkin法出发
1.3 收敛性和误差估计
习题
2 一维高次元
2.1 一次元(线性元)
2.2 二次元
2.3 三次元
习题
3 解二维问题的矩形元
3.1 Lagrange型公式
3.2 Hermite型公式
习题
4 三角形元
4.1 面积坐标及有关公式
4.2 Lagrange型公式
4.3 Hermite型公式
习题
5 曲边元和等参变换
6 二阶椭圆方程的有限元法
6.1 有限元方程的形成
6.2 矩阵元素的计算
6.3 边值条件的处理
6.4 举例:Poisson方程的有限元法
6.5 数值例子
习题
7 多重网格法
7.1 差分形式的二重网格法
7.2 有限元形式的二重网格法
7.3 多重网格迭代和套迭代技术
8 初边值问题的有限元法
8.1 热传导方程
8.2 波动方程
名词索引
参考文献
免责声明:
微分方程数值解法第四版来源于网络,仅用于分享知识,学习和交流!请下载完在24小时内删除。微分方程数值解法第四版禁用于商业用途!如果您喜欢《微分方程数值解法第四版》,请购买正版,谢谢合作。
爱学习,请到3322软件站 / 查找资源自行下载!
使用说明:
方法一:1、下载并解压,得出pdf文件
2、如果打不开本文件,请务必在3322软件站选择一款阅读器/zt/430.html下载
3、安装后,在打开解压得出的pdf文件
4、双击进行阅读
方法二:
1、在手机里下载3322软件站中的阅读器和百度网盘
2、直接将pdf传输到百度网盘
3、用阅读器打开即可阅读
展开更多
微分方程数值解法第四版(含答案)pdf扫描版下载地址
- 需先下载高速下载器:
- 专用下载:
- 其它下载: